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Abstract. This paper is devoted to the formulation of quantum field theory for an early universe
in general relativity, considered as the Dirac general constrained system. The main idea is
the Hamiltonian reduction of the constrained system in terms of measurable quantities of the
observational cosmology: the world proper time, cosmic scale factor, and the density of matter.
We define ‘particles’ as field variables in the holomorphic representation which diagonalize the
measurable density. The Bogoliubov quasiparticles are determined by diagonalization of the
equations of motion (but not only of the initial Hamiltonian) to get the set of integrals of motion
(or conserved quantum numbers, in quantum theory). This approach is applied to describe particle
creation in the models of the early universe where the Hubble parameter goes to infinity.

1. Introduction

All modern relativistic field theories describe constrained systems with a set of ‘superfluous’
degrees of freedom and pure gauge fields. An identification of physical variables and quantities,
in gauge theories and general relativity (GR), is a long-time problem which stimulated Dirac
to formulate, for this aim, the general Hamiltonian theory for constrained systems [1], later
developed by many authors (see, e.g., monographs [2,3]). The essence of the Dirac approach
to constrained systems is the reduction of the initial extended phase space to separate the true
physical variables from the parameters of gauge and general coordinate transformations and
to construct a dynamic equivalent unconstrained system in the reduced phase space in terms
of gauge-invariant variables which are called the ‘Dirac observables’.

However, the application of the Dirac scheme of the Hamiltonian reduction to field theories
invariant with respect to the reparametrization of time (GR and cosmological models) meets
with an additional peculiarity: in these theories there are superfluous variables which are
excluded by constraints and abandon the sector of physical variables (i.e. ‘Dirac observables’),
but not the sector of measurable quantities† [4–6].

Examples of such variables are the cosmic scale factor and the invariant proper time
treated as measurable quantities in cosmological models. In this case, the set of equations of
the reduced theory does not reflect all the physical content of the initial extended theory and
must be supplemented by two equations for the superfluous variable and its momentum [5].
The second equation leads to the Friedmann–Hubble law of evolution of the universe (i.e. the
dependence of the red shift of spectral lines of the cosmic object atoms on a distance of this

† Yet it is worth recalling that in 1873 J C Maxwell wrote [7] ‘The most important aspect of any phenomenon from
a mathematical point of view is that of a measurable quantity. I shall therefore consider electrical phenomena chiefly
with a view to their measurement describing the methods of measurement and defining the standards on which they
depend’.
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6192 V N Pervushin and V I Smirichinski

object from the Earth); while the first one determines the evolution of measurable density of
matter [6].

In the present paper, we would like to reconsider the problem of ‘particles’ and
‘quasiparticles’in the early universe [8–11] in the context of the Dirac approach to constrained
systems supplemented by the sector of measurable quantities [4–6].

The basic idea is the definition of ‘particles’ as field variables in the holomorphic
representation [2] which diagonalize the measurable density in the supplemented equations of
the evolution of the universe.

To get the set of integrals of motion (or conserved quantum numbers in quantum theory), we
apply the Bogoliubov transformations of particle variables for diagonalization of the equations
of motion (but not only of the initial Hamiltonian [8–11]), in correspondence with the original
idea in Bogoliubov’s paper [12] where these transformations were considered as an effective
mathematical tool to construct the energy spectrum of a weakly non-ideal Bose gas.

The Bogoliubov quasiparticles are determined as field variables with conserved ‘numbers
of quasiparticles’.

In the next section, we formulate the problem and the model. In section 3, measurable
particles are defined. In section 4, we introduce the Bogoliubov transformations to diagonalize
equations of motion. Section 5 is devoted to the description of creation of massive particles
and gravitons in the early universe.

2. Statement of problem

GR

Wgr(g) =
∫

d4x

[
−√−gµ

2

6
R(g) + Lmatter

](
µ2 = M2

P lanck

3

8π

)
(1)

is considered as a constrained system for the Dirac-ADM 3+1 foliation of the four-dimensional
manifold [13]

(ds)2e = gµν dxµ dxν = N2 dt2 − (3)gij d̆x
i d̆xj (d̆xi = dxi +Ni dt). (2)

The matter Lagrangian in the action describes a set of boson and fermion fields. The problems
of initial data and classical and quantum Hamiltonian dynamics of these fields in GR are
conventionally formulated in terms of the so-called Lichnerowicz conformal-invariant field
variables and metric [17,18]
(n)fc(x) = (n)f (x)‖(3)g(t, x)‖−n/6 (ds)2c = N2

c dt2 − (3)g(c)ij d̆xi d̆xj ‖(3)gc‖ = 1

(3)

where(n = −1,− 3
2, 0, 2) is the conformal weight for scalar, vector, spinor, and tensor fields,

respectively,Nc is the conformal lapse function and dsc is the conformal interval.
As a result, the action of GR in terms of the conformal variables (3) has the structure [5]

of the Penrose–Chernikov–Tagirov action [19] for the conformal scalar field

W
gr
tot (ϕg, fc) =

∫
dt d3x

[
−Nc

ϕ2
g

6
(4)Rc + ϕg∂µ(Nc∂

µϕg) +Nc(L(ϕg=0) − ϕgF + ϕ2
gB)

]
(4)

whereL(ϕg=0) is the massless part of the matter Lagrangian,B andF are the mass terms of the
boson and fermion fields, respectively, both the Newton constant and masses of elementary
particles are formed by the metric scale fieldϕg

ϕg = µ‖(3)g‖1/6. (5)
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Action (4) can also be considered as a scalar version [5,6] of the Weyl conformal theory [20],
where the metric scale field (5) plays the role of the Lichnerowicz variable (3) of a scalar field
considered as the measure of a change of the length of a vector in its parallel transport and,
simultaneously, as a modulus of the Higgs scalar field in the standard model of unification of
electroweak and strong interactions. Dynamics of both the theories (the Einstein GR and the
Weyl one) is the same, but not standards of measurement. An Einstein observer measures the
absolute lengths(ds)e, while a Weyl observer can measure only the ratio of lengths of two
vectors(ds)w = (ds1)e/(ds2)e = (ds1)c/(ds2)c which is conformal invariant.

The Dirac-ADM action and interval (2) are invariant with respect to transformations of a
kinemetric subgroup of the group of general coordinate transformations [5,14,15]

t → t ′ = t ′(t) xi → x ′i = x ′t (t, x1, x2, x3). (6)

This group of diffeomorphisms of the Hamiltonian description of GR includes
reparametrizations of the coordinate time which could not be treated as the ‘observable’
evolution parameter of the reparametrization-invariant Hamiltonian dynamics of the universe.

One of the main problems of the Hamiltonian reduction in GR is to pick out the global
variable which can represent the internal evolution parameter of the corresponding reduced
system.

There is much speculation on this subject, here we try to continue these attempts in the
spirit of identification of this ‘internal evolution parameter’ in GR with the global component
of the metric scale field (5) (or, the scalar field in Weyl’s theory [6]) [5,6,18]:

ϕg(t, x) = µ‖(3)g(t, x)‖1/6 = ϕ0(T )a(T , x). (7)

HereT is the world conformal time formed by the global componentN0 of the conformal
lapse function:

Nc(t, x) = N0(t)N (T , x) dT = N0(t) dt. (8)

FieldsN (T , x); a(T , x) begin from unit,N (T , x) = 1 +· · · , in the cosmological perturbation
theory [16] and form interactions of the fields with the positive contribution to the energy
constraint.

When interactions are neglected (a = N = 1; Nk = 0; gcij = δij + hij ), the GR action
is reduced to the action of the well known system of ‘free’ conformal fields in a finite space-
volume(V = ∫ d3x) [8–11]

WE [Pf , f ;P0, ϕ0|t ] =
∫ t2

t1

dt

([∫
d3x

∑
f

Pf ḟ

]
− ϕ̇0P0

−N0

[
− P 2

0

4V
+H0

]
+

1

2
∂0(P0ϕ0)

)
(9)

whereH0 is a sum of the Hamiltonians of ‘free’ fields, graviton(h), photon(p), massive vector
(v), and spinor(s):

H0 = HM +HR +Hh (10)

HM = 1
2

∫
d3x (P 2

(v) + (∂iv)
2 + (ybϕ0)

2v2) +
∫

d3x ψ̄(ysϕ0 − iγj∂j )ψ (11)

is the Hamiltonian of massive conformal fields, where the role of masses is played by
the ’internal evolution parameter’ϕ0 multiplied by dimensionless constantsy, HR is the
Hamiltonian of massless fields withy = 0, andHh is the Hamiltonian of gravitons:

Hh =
∫

d3x

(
6(P T(h))

2

ϕ2
0

+
ϕ2

0

24
(∂ih

T )2

)
(hTii = 0; ∂jhTji = 0) (12)
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(where the last two equations follow from the separation of the determinant of three-
dimensional metric (3) and from the momentum constraint). There is a direct correspondence
between a particle in special relativity (SR)

WE =
∫

dτ

[
−pµẋµ − N

2m
(−p2

µ +m2)

]
µ = (0, 1, 2, 3) (13)

and the universe in GR: for the unobservable coordinate times(τ → t); the internal evolution
parameter(x0 → ϕ0); the reduced phase space variables(xi, pi → Pf , f ); and the proper
time(dT = Ndτ → dT = N0dt). Recall that the conformal world timeT is considered in the
Weyl theory as the time measured by an observer in the comoving frame, while in the Einstein
GR, an observer measures in the comoving frame the Friedmann world time(Tf ) connected
with T by the relation

µdTf (T ) = ϕ0(T ) dT . (14)

Finally, we get the following statement of the problems considered in the present paper: to
fulfil the Hamiltonian reduction in the theory described by action (9), and to quantize the
reduced version of the theory.

3. Evolution of the universe and ‘particles’

The Hamiltonian reduction of the system described by action (9) means explicit solving of the
constraint

δWE
0

δN0
= 0⇒ H =

[
−P

2
0

4V
+H0

]
= 0⇒ (P0)± = ±2

√
VH0 ≡ ±HR. (15)

This equation has two solutions which correspond to two reduced systems with the actions

WR
± (Pf , f |ϕ0) =

∫ ϕ2=ϕ0(t2)

ϕ1=ϕ0(t1)

dϕ0

{(∫
d3x

∑
f=hT ,p,v,s

Pf ∂ϕof

)
∓HR ± 1

2∂ϕo(H
Rϕ0)

}
(16)

where the scale factorϕ0 plays the role of the evolution parameter andHR is the corresponding
Hamiltonian of evolution.

The local equations of motion of systems (16) reproduce the invariant sector of the initial
extended system and determine the evolution of fields(Pf , f ) with respect to the internal
evolution parameterϕ0

Pf (x, t), f (x, t)→ Pf (x, ϕ0), f (x, ϕ0).

The reduced quantum system is described by the Schrödinger-type equation

d

idϕ0
9R(ϕ0|f ) = ±HR9R(ϕ0|f ) (17)

which is a square root of the Wheeler–DeWitt equationĤ9wdw = 0.
We should emphasize that no one reduced scheme (the classical one and two quantum)

contains the ‘evolution of the universe’ in terms of the world timeT measured by an observer
in the comoving frame, as no one reduced scheme contains this time dT = N0dt .

The ‘evolution of the universe’ is the dependence of the world timeT on the internal
evolution parameterϕ0. This dependence is described by the equation for the ‘superfluous’
momentumP0 (which is omitted by the reduced actionWR)

δWE

δP0
= 0⇒

(
dϕ0

N0 dt

)
±
= (P0)±

2V
= ±

√
ρ(ϕ0) ρ = H0

V
. (18)
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A solution of the latter

T (ϕ0) =
∫ ϕ0

0
dϕ ρ−1/2(ϕ) (19)

is treated in cosmology as the theoretical description of the Hubble red shift of spectral lines
of atoms on cosmic objects at a distanceD from the Earth observer:

Z(D) = ϕ0(Tf )

ϕ0(Tf −D/c) − 1= HfHub(Tf )D/c + · · ·HfHub(Tf ) =
dϕ0(Tf )

ϕ0(Tf ) dTf
(20)

(whereHfHub(Tf ) is the Hubble parameter).
The red-shift dataZ(D) determine the observational dependence of the world proper time

on the internal evolution parameter (here, the cosmic scale factorϕ0).
For a relativistic particle described by action (13) the dependence of the proper time

T (measured by an observer in the comoving frame) with respect to the internal evolution
parameter(x0) (measured by another observer in the rest frame) is nothing but the dynamic
version of the Lorentz transformation.

There is an essential physical difference between SR and GR. In SR, two times (the
proper timeT and internal evolution parameterx0) are measured in two different frames (the
comoving and rest ones) which exclude each other. While in GR, both the times,T andϕ0, are
measured by an observer in the comoving frame. The relation between these two times forms
the evolution of the universe (19). This evolution depends on standards of measurement of the
time.

The same GR dynamics (with the same Wheeler–DeWitt wavefunction) corresponds to
different cosmological pictures for different observers: an Einstein observer, who supposes that
he measures an absolute interval, obtains the Friedmann–Robertson–Walker (FRW) cosmology
where the red shift is treated as expansion of the universe; a Weyl observer, who supposes that
he measures a relative intervalDc, obtains the Hoyle–Narlikar cosmology [21]. The red shift
and the Hubble law in the Hoyle–Narlikar cosmology [21]

Z(Dc) = ϕ0(T )

ϕ0(T −Dc/c)
− 1' HcHubDc/c HcHub =

1

ϕ0(T )

dϕ0 (T )

dT
=
√
ρ(T )

ϕ0(T )
(21)

reflect the change of the size of atoms in the process of evolution of masses [4,21].
Equation (21) gives the relation between the present-day value of the scalar field and the

cosmological observations (the density of matter and the Hubble parameter)

ϕ0(T ) =
√
ρ0(T )

HcHub(T )
. (22)

This value coincides with the Newton constant (or the Planck mass) in limits of the observational
data

ϕ2
0(T = T0)

6
= µ2�0

6
= M2

P l�0

16π
⇒ ϕ0(T0) = µ�1/2

0 . (23)

The present-day mean matter density

ρb = �0ρcr

(
ρcr = 3HcHub

8π
M2
P l

)
(24)

is estimated from observational data on luminous matter (�0 = 0.01), the flat rotation curves
of spiral galaxies (�0 = 0.1), and other data [22] (0.1< �0 < 2).

The comparison of direct observations of masses and numbers of particles in the universe
with the density of matter measured by the Hubble law (20), or (21), in the context of quantum
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field theory, means the particle-like treatment of the corresponding Hamiltonian for free fields
H0 which forms this density. The particle-like representation ofH0 has the form

H0 =
∑

k;f=h,p,v,s
ωaf (k;ϕ0)N̂af (25)

whereN̂af is the ‘number of particles’

N̂af = {a+
f af }± = 1

2(a
+
f af ± af a+

f )) (26)

((+) corresponds to bosons; and(−), to fermions); andωaf (k;ϕ0) is the one-particle energy

ωaf (k;ϕ0) =
√
k2 + (yf ϕ0)2 (27)

for gravitons(h) and photons(p) with (y = 0), and for bosons(v) and fermions(s) with
(y 6= 0).

Thus, the concepts of measurable times lead to concepts of the measurable Hamiltonian
and ‘particles’. In contrast with the conventional approach [8–11] (where ‘particles’ are defined
as constant coefficients of the decomposition of field variables over classical solutions), we
define the ‘observable particles’ as field dynamic variables in the holomorphic representation
which diagonalize the observable HamiltonianH0 in the form (25).

This holomorphic representation of field variables [2] is

f =
∑
(k,α)

exp(ikx)

V
3/2
0

√
2ωaf (k, ϕ0)

(a+
f (−k, α|t)ε(−k, α) + af (k, α|t)ε(k, α))

Pf = i
∑
(k,α)

exp(ikx)
√
ωaf (k, ϕ0)

V
3/2
0

√
2

(a+
f (−k, α|t)ε(−k, α)− af (k, α|t)ε(k, α))

(28)

with operators of creationa+ and annihilationa, of particles with the momentumk, polarization
ε(k, α), and energyωaf (k, ϕ0), andfh = hT

√
12ϕ0; Ph = PTh /

√
12ϕ0.

In terms of the ‘particle’ variables the extended action (9) has the form

WE
0 =

∫ t2

t1

dt

[
− P0ϕ̇0 +N0

P 2
0

4V
−
∑
f,kα

(
i

2
χ̄ af (k, t)∂tχaf (k, t)

−N0
1

2
χ̄ af (k, t)Ĥaf (k, t)χaf (k, t)

)]
(29)

here

χ̄ af = (af ,−a+
f ) χaf =

(
a+
f

af

)
Ĥaf =

∣∣∣∣ ωaf −i1f

−i1f −ωaf

∣∣∣∣ . (30)

This action includes additional nondiagonal terms describing the creation of matter in the
evolution of the universe:

1p = 0 1v = d

dT
log

√
ωv(k, T )

ωv(k, 0)

1s = dϕ

dT

〈
kiγiγ0ys

2ωs(k, T )2

〉
1h = 2

d

dT
log

(
ϕ(T )

ϕ(0)

) (31)

where〈 〉 denotes the matrix element between states with definite spins, andω(k, 0), ϕ(0) is
defined by initial data. In the following, for simplicity, we consider photons(1p = 0), massive
bosons(v), and gravitons(h).

On the present-day stage,1f ∼ 0 and numbers of all particles are conserved. In this
case, the proper time dynamics with a fixed number of massive particles(k = 0) leads to the
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Hubble law for the dust stage of classical universe and the corresponding wavefunction of the
universe expressed in terms of the proper time has the form [4]

9R(ϕ0(T )|f ) = exp(iMdustTf )〈f |Mdust 〉 (µ dTf = ϕ0(T ) dT )

whereMdust is a sum of all particle masses of the universe,〈f |M〉 is the product of oscillator
wavefunctions,Tf is the Friedmann time andT is the conformal one. As we have seen above,
the quantum universe filled in by a fixed number (1088) of massless particles (photons) is
described by the wavefunction

9R(ϕ0(T )|f ) = exp(iEradiationT )〈f |Eradiation〉
and by the Hubble law of the classical universe in the radiation stage [4]. Thus, the separation
of the global observable time and energies allows us to unify classical and quantum field theory
with the classical and quantum cosmologies and to give the perspective of the construction of
quantum gravity as a quantum version of the cosmological perturbation theory [16].

In the early universe,1 6= 0 and numbers of particles are not conserved:

dN̂f (T )
dT

6= 0.

The problem is to find integrals of motion of time-reparametrization system (29) and to
describe creation of ‘particles’ in the evolution of the universe.

4. Bogoliubov quasiparticles: integrals of motion

To construct integrals of motion in the context of the above-mentioned Hamiltonian reduction,
we use the Bogoliubov transformations [12] of ‘particle’ variables

b+ = α∗a+ + β∗a b = αa + βa+ |α|2 − |β|2 = 1 (32)

which diagonalize the corresponding classical equations expressed in terms of ‘particles’
(a+, a), so that the ‘number of quasiparticles’ is conserved

dNb(t)
dt

≡ d(b+b)

dt
= 0. (33)

The classical equations for action (29) can be written as

i
d

dT
χa = −Ĥaχa. (34)

After Bogoliubov transformations (32)

χb = Ôχa Ô =
(
α∗ β∗

β α

)
Ô−1 =

(
α −β∗
−β α∗

)
(35)

this equation obtains the form

i
d

dT
χb =

[
−iÔ−1 d

dT
Ô − Ô−1Ĥ aÔ

]
χb ≡ −Ĥ bχb. (36)

Let us requireĤ b to be diagonal

Ĥ b =
(
ωb 0
0 −ωb

)
. (37)

This means thatα andβ satisfy the equations

ωb = (|α|2 + |β|2)ωa − i(β∗α − βα∗)1− i(β∗∂T β − α∂T α∗) (38)

0= 2βαωa − i(α2 − β2)1− i(α∂T β − β∂T α). (39)
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For

α = cosh(r)eiθ β = i sinh(r)e−iθ (40)

these equations convert into

ωb = ωa cosh 2r −1 sinh 2r cos 2θ − cosh 2r∂T θ

0= ωa sinh 2r −1 cosh 2r cos 2θ − sinh 2r∂T θ

0= 1 sin 2θ + ∂T r.

(41)

If we consider these equations for constantωa,1, we get the result of Bogoliubov’s paper [12]

θ = 0 cosh 2r = ωa

ωb
ωb =

√
ω2
a −12. (42)

Finally, the classical equations in terms of ‘quasiparticles’ are of the form

d

dT
b+ = iωbb

+ d

dT
b = −iωbb (43)

with the solution

b+ = exp(iQ)b+
0 b = exp(−iQ)b0 Q =

∫ T

dT ′ ωb(T ′) (44)

and the conserved number of quasiparticles

N̂b(t) = {b+(t)b(t)} = {b+
0b0} (45)

whereb+
0 andb0 are initial data.

To close equation (43), we recall that the evolution of the universe is determined by the
density of ‘observable particles’

dϕ

dT
=
√
ρ(ϕ) ρ(ϕ) = H0

V
=
∑

f ωf (ϕ){a+
f af }

V0
(46)

{a+a} = {b+b} cosh 2r − i

2
(b+2− b2) sinh 2r. (47)

Equations (41)–(47) represent a complete set of equations of classical theory in terms of
the holomorphic variables. This theory has a set of integrals of motion (45) which should
be converted into the quantum numbers of the corresponding quantum reduced system in
agreement with the correspondence principle.

5. Creation of particles

As ϕ0 left the phase space to convert into the internal evolution parameter, in quantum theory
we can only quantize the particle sector

[a, a+] = 1 [b, b+] = 1. (48)

In the following, we restrict ourselves to the universe in the state of vacuum of quasiparticles
(i.e. the squeezed vacuum):

b〈0|b+b|0〉b = 0 〈0|{a+a}|0〉 = 1
2 cosh 2r = 1

2N0(ϕ0). (49)

The quantum equation for the early universe coincides with the Schrödinger one, and the
wavefunction of the state of ‘nothing’ is defined as the squeezed vacuumbf (k, 0)|0〉b = 0
with the scale factor and the particle numbers given by equations (46) and (47).
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We can rewrite equations (29) in terms of the number of particlesN0(ϕ)

ωbf = ωfN0 −1f

[√
N 2

0 − 1 cos 2θ +N02
dθ

dτf

]
ωf

√
N 2

0 − 1= 1f

[
N0 cos 2θ +

√
N 2

0 − 12
dθ

dτf

]
√
N 2

0 − 1 sin 2θ = −dN0

dτf
1f = √ρ dτf (ϕ0)

2dϕ0

(50)

with

τh(ϕ0) = 2 log

(
ϕ0(T )

ϕ0(0)

)
ωh =

√
k2

τv(ϕ0) = log

(
ωv(ϕ0)

ω0

)
ωv(ϕ0) =

√
k2 + (yvϕ0)2

(51)

whereω0, ϕ0(0) are the initial data. From first two equations (50) we get

ωbf =
1f cos 2θ√
N 2

0 − 1
.

There are two different regimesωaf � 1f , (1f = 0)andωaf � 1f , for which equations (50)
can be solved exactly.

For the case1f = 0 we gotθ = 0,N0 = 1, and it means that particles are not created.
In the opposite case, for1→∞, the solution to these equations has the functional form

θf = π

4
N0(ϕ0) = 1

2

(
ω0

ωa(ϕ0)
+
ωa(ϕ0)

ω0

)
(52)

for massive particles(f = v), and

θf = π

4
N0(ϕ0) = 1

2

(
ϕ2

0(0)

ϕ2
0(T )

+
ϕ2

0(T )

ϕ2
0(0)

)
(53)

for gravitons(f = h). In both the cases(v, h), this solution has the zero energy of the
Bogoliubov quasiparticles (ωbf = 0). In this approximation, the density of gravitons

〈ρ(ϕ)〉 = ρ0
N0(ϕ)

2
(54)

(whereρ0 is the vacuum density) corresponds to the Friedmann cosmological model with the
‘rigid’ state in the three-dimensional space with a negative curvature.

The proper time dynamics is determined by the integral

T (ϕ0) =
∫ ϕ0

0
dϕ

1√〈ρ(ϕ)〉 (55)

which leads to the following red-shift formula of the universe evolution:

ϕ2
0(T )

ϕ2
0(0)

= sinh

(
2T

T0

)
T0 = ϕ0

√
2

ρ0
. (56)

We can see that for a Weyl observer (with the relative standard of length) there can be a period
of very fast inflation-like evolution of the cosmic scale factor, while an Einstein–Friedmann
observer (with the absolute standard of the length) sees the linear dependence of the measured
proper time on the scale factor. Thus, ten billion years for an observer with the absolute
standard can convert into the ‘biblical’ short period of several thousand years for an observer
with the relative standard.
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6. Conclusion

We have considered the concepts of ‘particle’ and ‘quasiparticle’ in the field theory with
the time-reparametrization invariance and the energy constraint, using as an example the
description of the universe in GR.

The peculiarity of constrained systems is the presence of superfluous degrees of freedom.
Removing these superfluous degrees of freedom from the constrained theory is the aim of the
Hamiltonian reduction which has to represent (according to the Dirac theory) an equivalent
unconstrained system limited by the ‘sector of the Dirac observables’.

However, in the considered case the ‘sector of the Dirac observables’ does not include
all ‘measurable quantities’. The superfluous variables, leaving the phase space, remain in the
theory as measurable quantities out of the ‘sector of the Dirac observables’ of the reduced
version. In particular, to describe in the generalized Hamiltonian theory the Hubble law of
evolution of the universe (measured in observational cosmology) we are enforced to remain in
the theory two time-like variables: the world proper time (measured in the comoving frame)
and cosmic scale factor (as the internal evolution parameter). While for the description of
evolution of the Dirac observables (i.e. the reduced theory) one invariant time parameter is
sufficient. The evolution of the universe (as the dependence of the proper time on the internal
evolution parameter) goes beyond the scope of the ‘equivalent’ reduced theory and determines
the measurable density of the matter field. ‘Particles’ are the variables which diagonalize
this measurable density. ‘Quasiparticles’ are the variables which diagonalize the equations
of motion and determine a set of integrals of motion. These definitions strongly differ from
the conventional approach [8–11] which goes from the conserved ‘particles’ as initial data
(i.e. constant coefficients of the field decomposition over classical solutions) to ‘unconserved
quasiparticles’ with diagonalization of the initial Hamiltonian, but not the equations of motion.

The Bogoliubov quasiparticles classify the states of the universe in both the classical
theory and the quantum one. The states with a fixed number of quasiparticles are squeezed
states for particles. The Bogoliubov quasiparticles allow us to define the state of ‘nothing’ as
the squeezed vacuum.

The formulation of classical and quantum versions of GR in terms of measurable quantities
leads to unification of classical and quantum cosmologies with QFT in GR and reveals the
dependence of the classical evolution of the universe and the wavefunction of the universe on
‘methods of measurement and their standards’.

An Einstein observer measuring lengths by the absolute standard sees the expansion of
the universe, while a Weyl observer (who can measure the ratio of lengths of two vectors) sees
the Hoyle–Narlikar evolution.

We considered the difference between a Weyl observer and an Einstein observer using, as
an example, the evolution of the early universe. A Weyl observer (with a relative standard of
length) sees the squeezed vacuum inflation of particle masses due to the zero-energy excitation
in the spectrum of quasigravitons, while an Einstein observer sees the linear dependence of
the scale factor on the world time for the same dynamics.
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